Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Angew Chem Int Ed Engl ; : e202406233, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591161

RESUMO

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.

2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602740

RESUMO

This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike. Executive function tests (Flanker, N-back, More-odd-shifting) were performed before and after exercise and functional near-infrared spectroscopy was used to monitor prefrontal cerebral blood flow changes during the tasks. The results indicated significant differences between the two groups regarding executive function. Participants with lower aerobic fitness performed better than their higher fitness counterparts in inhibitory control and working memory, but not in cognitive flexibility. This finding suggests that the aerobic fitness may moderate the extent of cognitive benefits gained from acute aerobic exercise. Furthermore, the neuroimaging data indicated negative activation in the frontopolar area and dorsolateral prefrontal cortex in response to three complex tasks. These findings underscore the importance of considering individual aerobic fitness when assessing the cognitive benefits of exercise and could have significant implications for tailoring fitness programs to enhance cognitive performance.


Assuntos
Função Executiva , Exercício Físico , Humanos , Memória de Curto Prazo , Circulação Cerebrovascular , Córtex Pré-Frontal Dorsolateral
3.
Clin Transl Immunology ; 13(3): e1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501063

RESUMO

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

4.
Cytokine ; 178: 156568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471420

RESUMO

BACKGROUND: Laryngopharyngeal reflux (LPR) is one of the most common disorders in otorhinolaryngology, affecting up to 10% of outpatients visiting otolaryngology departments. In addition, 50% of hoarseness cases are related to LPR. Pepsin reflux-induced aseptic inflammation is a major trigger of LPR; however, the underlying mechanisms are unclear. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has become an important bridge between stimulation and sterile inflammation and is activated by intracellular reactive oxygen species (ROS) in response to danger signals, leading to an inflammatory cascade. In this study, we aimed to determine whether pepsin causes LPR-associated inflammatory injury via mediating inflammasome activation and explore the potential mechanism. METHODS: We evaluated NLRP3 inflammasome expression and ROS in the laryngeal mucosa using immunofluorescence and immunohistochemistry. Laryngeal epithelial cells were exposed to pepsin and analyzed using flow cytometry, western blotting, and real-time quantitative PCR to determine ROS, NLRP3, and pro-inflammatorycytokine levels. RESULTS: Pepsin expression was positively correlated with ROS as well as caspase-1 and IL-1ß levels in laryngeal tissues. Intracellular ROS levels were elevated by increased pepsin concentrations, which were attenuated by apocynin (APO)-a ROS inhibitor-in vitro. Furthermore, pepsin significantly induced the mRNA and protein expression of thioredoxin-interacting protein, NLRP3, caspase-1, and IL-1ß in a dose-dependent manner. APO and the NLRP3 inhibitor, MCC950, inhibited NLRP3 inflammasome formation and suppressed laryngeal epithelial cell damage. CONCLUSION: Our findings verified that pepsin could regulate the NLRP3/IL-1ß signaling pathway through ROS activation and further induce inflammatory injury in LPR. Targeting the ROS/NLRP3 inflammasome signaling pathway may help treat patients with LPR disease.


Assuntos
Refluxo Laringofaríngeo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pepsina A/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
5.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428703

RESUMO

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Genet ; 15: 1333931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482382

RESUMO

Introduction: Post-transcriptional RNA modifications are crucial regulators of tumor development and progression. In many biological processes, N1-methyladenosine (m1A) plays a key role. However, little is known about the links between chemical modifications of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) and their function in bladder cancer (BLCA). Methods: Methylated RNA immunoprecipitation sequencing and RNA sequencing were performed to profile mRNA and lncRNA m1A methylation and expression in BLCA cells, with or without stable knockdown of the m1A methyltransferase tRNA methyltransferase 61A (TRMT61A). Results: The analysis of differentially methylated gene sites identified 16,941 peaks, 6,698 mRNAs, and 10,243 lncRNAs in the two groups. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially methylated and expressed transcripts showed that m1A-regulated transcripts were mainly related to protein binding and signaling pathways in cancer. In addition, the differentially genes were identified that were also differentially m1A-modified and identified 14 mRNAs and 19 lncRNAs. Next, these mRNAs and lncRNAs were used to construct a lncRNA-microRNA-mRNA competing endogenous RNA network, which included 118 miRNAs, 15 lncRNAs, and 8 mRNAs. Finally, the m1A-modified transcripts, SCN2B and ENST00000536140, which are highly expressed in BLCA tissues, were associated with decreased overall patient survival. Discussion: This study revealed substantially different amounts and distributions of m1A in BLCA after TRMT61A knockdown and predicted cellular functions in which m1A may be involved, providing evidence that implicates m1A mRNA and lncRNA epitranscriptomic regulation in BLCA tumorigenesis and progression.

7.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
8.
Adv Healthc Mater ; 13(10): e2303539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233357

RESUMO

Peripheral nerve injury (PNI) is a common clinical problem and regenerating peripheral nerve defects remain a significant challenge. Poly(polyol sebacate) (PPS) polymers are developed as promising materials for biomedical applications due to their biodegradability, biocompatibility, elastomeric properties, and ease of production. However, the application of PPS-based biomaterials in nerve tissue engineering, especially in PNI repair, is limited. In this study, PPS-based composite nanofibers poly(l-lactic acid)-poly(polycaprolactone triol-co-sebacic acid-co-N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid sodium salt) (PLLA-PPSB) are aimed to construct through electrospinning and assess their in vitro biocompatibility with Schwann cells (SCs) and in vivo repair capabilities for peripheral nerve defects. For the first time, the biocompatibility and bioactivity of PPS-based nanomaterial are examined at the molecular, cellular, and animal levels for PNI repair. Electrospun PLLA-PPSB nanofibers display favorable physicochemical properties and biocompatibility, providing an effective interface for the proliferation, glial expression, and adhesion of SCs in vitro. In vivo experiments using a 10-mm rat sciatic nerve defect model show that PLLA-PPSB nanofiber nerve conduits enhance myelin formation, axonal regeneration, angiogenesis, and functional recovery. Transcriptome analysis and biological validation indicate that PLLA-PPSB nanofibers may promote SC proliferation by activating the PI3K/Akt signaling pathway. This suggests the promising potential of PLLA-PPSB nanomaterial for PNI repair.


Assuntos
Fatores de Coagulação Sanguínea , Nanofibras , Traumatismos dos Nervos Periféricos , Ratos , Animais , Nanofibras/uso terapêutico , Nanofibras/química , Fosfatidilinositol 3-Quinases , Nervo Isquiático/fisiologia , Tecidos Suporte/química , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Poliésteres/química , Regeneração Nervosa
9.
Huan Jing Ke Xue ; 45(1): 8-22, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216454

RESUMO

PM2.5 is extremely harmful to the atmospheric environment and human health, and a timely and accurate understanding of PM2.5 with high spatial and temporal resolution plays an important role in the prevention and control of air pollution. Based on multi-angle implementation of atmospheric correction algorithm (MAIAC), 1 km AOD products, ERA5 meteorological data, and pollutant concentrations (CO, O3, NO2, SO2, PM10, and PM2.5) in the Guangdong-Hong Kong-Macao Greater Bay Area during 2015-2020, a geographically and temporally weighted regression model (GTWR), BP neural network model (BPNN), support vector machine regression model (SVR), and random forest model (RF) were established, respectively, to estimate PM2.5 concentration. The results showed that the estimation ability of the RF model was better than that of the BPNN, SVR, and GTWR models. The correlation coefficients of the BPNN, SVR, GTWR, and RF models were 0.922, 0.920, 0.934, and 0.981, respectively. The RMSE values were 7.192, 7.101, 6.385, and 3.670 µg·m-3. The MAE values were 5.482, 5.450, 4.849, and 2.323 µg·m-3, respectively. The RF model had the best effect during winter, followed by that during summer, and again during spring and autumn, with correlation coefficients above 0.976 in the prediction of different seasons. The RF model could be used to predict the PM2.5 concentration in the Greater Bay Area. In terms of time, the daily ρ(PM2.5) of cities in the Greater Bay Area showed a trend of "decreasing first and then increasing" in 2021, with the highest values ranging from 65.550 µg·m-3 to 112.780 µg·m-3 and the lowest values ranging from 5.000 µg·m-3 to 7.899 µg·m-3. The monthly average concentration showed a U-shaped distribution, and the concentration began to decrease in January and gradually increased after reaching a trough in June. Seasonally, it was characterized by the highest concentration during winter, the lowest during summer, and the transition during spring and autumn. The annual average ρ(PM2.5) of the Greater Bay Area was 28.868 µg·m-3, which was lower than the secondary concentration limit. Spatially, there was a "northwest to southeast" decreasing distribution of PM2.5 in 2021, and the high-pollution areas clustered in the central part of the Greater Bay Area, represented by Foshan. Low concentration areas were mainly distributed in the eastern part of Huizhou, Hong Kong, Macao, Zhuhai, and other coastal areas. The spatial distribution of PM2.5 in different seasons also showed heterogeneity and regionality. The RF model estimated the PM2.5 concentration with high accuracy, which provides a scientific basis for the health risk assessment associated with PM2.5 pollution in the Greater Bay Area.

10.
Biomark Res ; 12(1): 6, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195587

RESUMO

BACKGROUND: Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS: We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS: Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS: Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.

11.
Cell Death Dis ; 15(1): 11, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182570

RESUMO

Emerging evidence indicates that protein activities regulated by receptor protein tyrosine phosphatases (RPTPs) are crucial for a variety of cellular processes, such as proliferation, apoptosis, and immunological response. Protein tyrosine phosphatase receptor type O (PTPRO), an RPTP, has been revealed as a putative suppressor in the development of particular tumors. However, the function and the underlying mechanisms of PTPRO in regulating of lung adenocarcinoma (LUAD) are not well understood. In this view, the present work investigated the role of PTPRO in LUAD. Analysis of 90 pairs of clinical LUAD specimens revealed significantly lower PTPRO levels in LUAD compared with adjacent non-tumor tissue, as well as a negative correlation of PTPRO expression with tumor size and TNM stage. Survival analyses demonstrated that PTPRO level can help stratify the prognosis of LUAD patients. Furthermore, PTPRO overexpression was found to suppress the progression of LUAD both in vitro and in vivo by inducing cell death via mitochondria-dependent apoptosis, downregulating protein expression of molecules (Bcl-2, Bax, caspase 3, cleaved-caspase 3/9, cleaved-PARP and Bid) essential in cell survival. Additionally, PTPRO decreased LUAD migration and invasion by regulating proteins involved in the epithelial-to-mesenchymal transition (E-cadherin, N-cadherin, and Snail). Moreover, PTPRO was shown to restrain JAK2/STAT3 signaling pathways. Expression of PTPRO was negatively correlated with p-JAK2, p-STAT3, Bcl-2, and Snail levels in LUAD tumor samples. Furthermore, the anti-tumor effect of PTPRO in LUAD was significant but compromised in STAT3-deficient cells. These data support the remarkable suppressive role of PTPRO in LUAD, which may represent a viable therapeutic target for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Humanos , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose , Caspase 3 , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias , Monoéster Fosfórico Hidrolases , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
12.
Exp Neurol ; 372: 114643, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38056582

RESUMO

Neuroinflammation is critically involved in nerve injury-induced neuropathic pain, characterized by local and systemic increased levels of proinflammatory cytokines. Interleukin-24 (IL-24), a key member of the IL-10 family, has been extensively studied for its therapeutic potential in various diseases, including cancer, autoimmune disorders, and bacterial infections, but whether it is involved in the regulation of neuropathic pain caused by peripheral nerve injury (PNI) has not been well established. In this study, we reported that spared nerve injury (SNI) induced a significant upregulation of IL-24 in fibroblasts, neurons, and oligodendrocyte precursor cells (OPCs, also called NG2-glia) in the affected spinal dorsal horns (SDHs), as well as dorsal root ganglions (DRGs). We also found that tumor necrosis factor α (TNF-α) induced the transcriptional expression of IL-24 in cultured fibroblasts, neurons, and NG2-glia; in addition, astrocytes, microglia, and NG2-glia treated with TNF-α exhibited a prominent increase in interleukin-20 receptor 2 (IL-20R2) expression. Furthermore, we evaluated the ability of IL-24 and IL-20R2 to attenuate pain in preclinical models of neuropathic pain. Intrathecal (i.t.) injection of IL-24 neutralizing antibody or IL-20R2 neutralizing antibody could effectively alleviate mechanical allodynia and thermal hyperalgesia after PNI. Similarly, intrathecal injection of IL-24 siRNA or IL-20R2 siRNA also alleviated mechanical allodynia after SNI. The inhibition of IL-24 reduced SNI-induced proinflammatory cytokine (IL-1ß and TNF-α) production and increased anti-inflammatory cytokine (IL-10) production. Meanwhile, the inhibition of IL-20R2 also decreased IL-1ß mRNA expression after SNI. Collectively, our findings revealed that IL-24/IL-20R might contribute to neuropathic pain through inflammatory response. Therefore, targeting IL-24 could be a promising strategy for treating neuropathic pain induced by PNI.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Interleucina-10 , Hiperalgesia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Medula Espinal/patologia , Neuralgia/metabolismo , Citocinas/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , RNA Interferente Pequeno/farmacologia
13.
Angew Chem Int Ed Engl ; 63(5): e202317402, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078790

RESUMO

The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109  M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011  M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108  M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.

14.
Child Adolesc Psychiatry Ment Health ; 17(1): 138, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098032

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects individuals across their lifespan. Early diagnosis and intervention are crucial for improving outcomes. However, current diagnostic methods are often time-consuming, and costly, making them inaccessible to many families. In the current study, we aim to test caregiver-child interaction as a potential tool for screening children with ASD in clinic. METHODS: We enrolled 85 preschool children (Mean age: 4.90 ± 0.65 years, 70.6% male), including ASD children with or without developmental delay (DD), and typical development (TD) children, along with their caregivers. ASD core symptoms were evaluated by Childhood Autism Rating Scale (CARS) and Autism Diagnostic Observation Schedule-Calibrated Severity Scores (ADOS-CSS). Behavioral indicators were derived from video encoding of caregiver-child interaction, including social involvement of children (SIC), interaction time (IT), response of children to social cues (RSC), time for caregiver initiated social interactions (GIS) and time for children initiated social interactions (CIS)). Power spectral density (PSD) values were calculated by EEG signals simultaneously recorded. Partial Pearson correlation analysis was used in both ASD groups to investigate the correlation among behavioral indicators scores and ASD symptom severity and PSD values. Receiver operating characteristic (ROC) analysis was used to describe the discrimination accuracy of behavioral indicators. RESULTS: Compared to TD group, both ASD groups demonstrated significant lower scores of SIC, IT, RSC, CIS (all p values < 0.05), and significant higher time for GIS (all p values < 0.01). SIC scores negatively correlated with CARS (p = 0.006) and ADOS-CSS (p = 0.023) in the ASD with DD group. Compared to TD group, PSD values elevated in ASD groups (all p values < 0.05), and was associated with SIC (theta band: p = 0.005; alpha band: p = 0.003) but not IQ levels. SIC was effective in identifying both ASD groups (sensitivity/specificity: ASD children with DD, 76.5%/66.7%; ASD children without DD, 82.6%/82.2%). CONCLUSION: Our results verified the behavioral paradigm of caregiver-child interaction as an efficient tool for early ASD screening.

15.
Angew Chem Int Ed Engl ; 62(51): e202315990, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37917047

RESUMO

Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010  M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.

16.
Nanomicro Lett ; 16(1): 11, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943399

RESUMO

Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa-1 and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.

17.
Psychol Med ; : 1-11, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37997447

RESUMO

BACKGROUND: COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns. METHODS: Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects. RESULTS: Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (ß = 0.49, 95% confidence interval (CI) [0.19-0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94-4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (-0.11 [-0.17 to -0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus. CONCLUSIONS: This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.

18.
Environ Sci Pollut Res Int ; 30(60): 125398-125416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012483

RESUMO

Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/metabolismo , Reatores Biológicos , Gases , Hidrodinâmica , Filtração , Biodegradação Ambiental
19.
World J Gastroenterol ; 29(32): 4860-4872, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37701137

RESUMO

BACKGROUND: Resistance to antibiotics is one the main factors constraining the treatment and control of Helicobacter pylori (H. pylori) infections. Therefore, there is an urgent need to develop new antimicrobial agents to replace antibiotics. Our previous study found that linolenic acid-metronidazole (Lla-Met) has a good antibacterial effect against H. pylori, both antibiotic-resistant and sensitive H. pylori. Also, H. pylori does not develop resistance to Lla-Met. Therefore, it could be used for preparing broad-spectrum antibacterial agents. However, since the antibacterial mechanism of Lla-Met is not well understood, we explored this phenomenon in the present study. AIM: To understand the antimicrobial effect of Lla-Met and how this could be applied in treating corresponding infections. METHODS: H. pylori cells were treated with the Lla-Met compound, and the effect of the compound on the cell morphology, cell membrane permeability, and oxidation of the bacteria cell was assessed. Meanwhile, the differently expressed genes in H. pylori in response to Lla-Met treatment were identified. RESULTS: Lla-Met treatment induced several changes in H. pylori cells, including roughening and swelling. In vivo experiments revealed that Lla-Met induced oxidation, DNA fragmentation, and phosphatidylserine ectropionation in H. pylori cells. Inhibiting Lla-Met with L-cysteine abrogated the above phenomena. Transcriptome analysis revealed that Lla-Met treatment up-regulated the expression of superoxide dismutase SodB and MdaB genes, both anti-oxidation-related genes. CONCLUSION: Lla-Met kills H. pylori mainly by inducing oxidative stress, DNA damage, phosphatidylserine ectropionation, and changes on cell morphology.


Assuntos
Helicobacter pylori , Metronidazol , Humanos , Ácido alfa-Linolênico/farmacologia , Fosfatidilserinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
Angew Chem Int Ed Engl ; 62(46): e202313112, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37770407

RESUMO

Catalytic asymmetric methods for the synthesis of synthetically versatile P-stereogenic building blocks offer an efficient and practical approach for the diversity-oriented preparation of P-chiral phosphorus compounds. Herein, we report the first nickel-catalyzed synthesis of P-stereogenic secondary aminophosphine-boranes by the asymmetric addition of primary phosphines to azo compounds. We further demonstrate that the P-H and P-N bonds on these phosphanyl hydrazine building blocks can be reacted sequentially and stereospecifically to access various P-stereogenic compounds with structural diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...